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Abstract. A particular free-surface flow of industrial importance is the unsteady motion of a thin layer of viscous
liquid on an engraved solid surface or substrate. A model is presented and numerical studies are performed for the
cell-emptying behaviour when an engraved roller is used to transfer a liquid coating onto a moving belt or web.
The three-dimensional unsteady liquid motion is calculated where the flow domain is bounded above by a stress-
free surface and bounded below by a moving substrate with one of several different patterns of indentations. The
goal is to ascertain, theoretically, how the choice of pattern affects the performance of the substrate. The physical
model is simplified through use of the long-wave or lubrication approximation that is appropriate to liquid flow in
thin layers. Three different patterns of cells: square, diamond and hexagonal, are considered. In each case the cell
shape is taken to be paraboloidal. Early-time cell emptying is found to be quite independent of pattern. There is a
degree of re-filling however, which is pattern-dependent. In this work, a high degree of symmetry is exploited to
reduce the size of the numerical computations. Only Newtonian liquids are considered.
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1. Introduction

A number of industrial processes involve the application of a thin liquid coating layer of a
solution or suspension to a flexible sheet or ‘web’. Often the purpose is to alter the surface
characteristics of the web after the liquid has been removed by drying. Many desirable product
characteristics may be imparted by the coating. These include, for example, antistatic proper-
ties, better ink adhesion for printing applications, and improved adhesion of vacuum-deposited
metals to provide an oxygen barrier for food products. Typically it is necessary to minimize
the variability of these surface characteristics. In practice, one must choose a coating process
that is capable of applying the liquid to the specified level of uniformity.

A wide range of coating operations use rollers to apply the liquid film to the moving web.
Many different methods of application exist ranging from single to multiple roll systems. For
liquids of relatively low viscosity, a knurled or ‘gravured’ roller may be used, so called due to
the large number of cells (typically 10’s to 100’s of microns in size) engraved throughout its
surface. These cells retain liquid when the roll is removed from a bath or enclosed chamber of
coating fluid; a proportion of this liquid is then given up to a rubber applicator roll (e.g. offset
coating) or straight onto the web (direct gravure coating). Practical information on coating
technology in general and roll or rotary coating in particular is given by Shepherd [1, Chapter
3].

A typical, albeit simplified, diagram of a rotary gravure coating operation is shown in
Figure 1. Liquid is picked up from the bath B by the gravured roller GR. The roller radius is
R and it is rotating at an angular speed ω. The knife blade, labeled K in the figure, may or
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Figure 1. Schematic diagram of a roll coater that removes liquid from a bath B and transfers it to the moving web
W . The small gravure cells are seen in enlargement in the inset where the liquid-air meniscus is also shown. This
paper deals with flow in the liquid region bounded by the gravure and the mensicus.

may not be present. When it is there, it provides an absolute limitation to the coating thickness,
since it is set at a fixed small distance from the roller. If the knife is not used, the amount of
liquid that is picked up from the bath, and carried by the roller, is determined largely by the
roller speed U = ωR, the viscosity µ of the liquid, the liquid surface tension σ, and the
acceleration of gravity g. For an ideally smooth roller rotating at sufficiently low speeds, the
basic solution is given in the classical work of Landau and Levich. They treated the closely-
related problem of determining the coating thickness on a flat plate that is removed vertically
from a bath [2, pp. 674–683]. In their solution the ratio of the applied thickness H to the
so-called capillary length (ρg/σ)1/2 is a function only of the capillary number µU/σ. Their
solution was generalized by Wilson in several ways, including, in this context, the situation
where the substrate is not perpendicular to the ambient fluid level in the bath [3]. This liquid
flux is established in the small region where the rotating roller meets the bath.

Mass conservation dictates that the liquid flux onto the roller, under steady-state operating
conditions, must be equal to the sum of the flux applied to the web and the flux returned to the
bath. Determination of the flux returned to the bath is equivalent to the so-called gravure-cell
evacuation problem for an engraved roller. We are concerned therefore with the amount of
liquid remaining in the indentations or cells. As shown in the inset in Figure 1, this problem
may be idealized by considering a moving sequence of cells under an almost steady liquid-air
interface or meniscus.

In addition to being an important determinant of the coating-process efficiency, i.e. the
liquid-coating thickness applied to the moving web, the cell-evacuation problem is also rel-
evant to another aspect of gravure coating. Coating remaining in the cells leads eventually
to a build-up of dried coating. When this build-up reaches a significant level, the ability of
the gravure to function efficiently and pick up the necessary amount of liquid is impaired.
At such times the continuous coating operation must be stopped, so that the gravure roller
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may be replaced. The frequency of stoppage, because of gravure clogging, strongly impacts
production efficiency.

Recently we have developed a numerical method, using the lubrication approximation, to
calculate the three-dimensional unsteady flow during the gravure-cell emptying process [4]. In
that work we considered only a square pattern of cells and found solutions for both Newtonian
and shear-thinning coating liquids. The cell shape was taken to be a trapezoidal solid. Cell
size was shown to be the principal determinant of emptying, with larger cells emptying more
completely. A suitable nondimensionalization of the simplified governing equations, when the
lubrication approximation is used, is all that is necessary to reach this conclusion. Gravure-cell
dimensions are measured in units that vary directly with surface tension σ; thus it is clear that
it is surface tension that is the principal cause of liquid retention in the cells. This is consistent
with experimental observation [5]. More recent two-dimensional finite-element simulations
confirm the importance of cell size in controlling emptying [6]. This would appear to suggest
a simple solution: better cell emptying will be obtained simply by making the cell size larger.
In practice, however, very large cells have been shown to cause problems with final coating
uniformity and appearance. Overly large cells may also damage, i.e. scratch, the substrate or
web.

Here we consider other cell patterns, but restrict consideration to cells of paraboloidal
shape and Newtonian coating liquids. The pattern is specified with three parameters; these
give the cell spacing in directions parallel and perpendicular to the roll, and the offset, parallel
to the roll, of alternating rows of cells.

In the following section we discuss the evolution equation used in the simulation. New
work on cell and pattern geometry is then presented. Section 3 deals with the computational
procedure and discusses the results. Suggestions for further work are included in the final
section.

2. The mathematical and numerical model

The inset in Figure 1 shows a gravured solid plate moving rightward with speed U under
an essentially fixed liquid-air mensicus. The radius of the wheel GR varies in practice from
several centimeters to a meter or more. It is very much larger than both the cell dimension and
the radius of curvature of the meniscus. Thus, to a good approximation, we will ignore the
gross curvature of the gravured surface.

We consider a pattern of indenture in two dimensions where x is taken in the direc-
tion of substrate motion. For definiteness, consider the gravure to consist of a planar ‘land’
with indentations. Take the land to be the (x, y) plane; thus the y direction is transverse to
the gravure motion. The coordinate z measures displacement in the normal direction. The
functions z = h(x, y, t) and z = h1(x, y, t) represent the liquid free surface and the mov-
ing substrate respectively. The rigid substrate moves at constant speed U in the positive x
direction; thus h1 satisfies the equation

h1t = −U h1x, (1a)

where subscripts signifiy partial derivatives and t is time. The total layer thickness h2 = h - h1

satisfies the lubrication evolution equation

h2t = −∇ · Q2, (1b)
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where Q2 is the vector areal flow rate given by

Q2 = Uh2 i − h3
2

3µ
∇p. (1c)

Here i is a unit vector in the x-direction. Equations (1a) and (1b) are both exact. The sec-
ond of these is an integral statement of conservation of mass within the liquid region and
Q2 = Q2(x, y, t). Equation (1c) uses the long-wave or lubrication approximation; this theory
requires that the layer is sufficiently thin that the Reynolds number for the flow is small
and also that the inclinations of both the free surface and the gravure, relative to the land,
are nominally small as well. Thus the flow is ‘slowly varying’ along the substrate. Careful
derivations of this approximation are give by Benney [7] and Atherton and Homsy [8] who ex-
tended the well-known Reynolds equation of lubrication theory to flows with free boundaries.
A calculation of two-dimensional free-surface flow over a fixed substrate with indentations,
and invoking the lubrication approximation, was given by Kim et al. [9]. A number of other
specific applications of lubrication-type approximations to rotary coating have also appeared
[10, 11].

The pressure gradient, under the lubrication approximation, is uniform across the thin
dimension of the liquid coating; thus it is p(x, y, t). It is given by

∇p = −σ∇∇2h, (2)

where ∇2h is the small-slope approximation to the free-surface curvature. Adding Equations
(1a) and (1b) we obtain the final evolution equation for the free surface,

ht = −Uhx − σ

3µ
∇ · (h3

2 ∇∇2h). (3)

Here σ is surface tension of the liquid coating and µ is the constant Newtonian viscosity. In
obtaining these equations, we have applied the no-slip condition on the moving substrate and
the condition of zero shear stress on the liquid surface.

Physical parameters can be removed from (2) by nondimensionalization. We take the
gravure-cell depth h0 as the length unit in which h and h1 are measured; x and y are measured
in units of the substrate length scale

L = h0

(
σ

3µU

)1/3

(4)

and the unit of time is

T ∗ = L

U
. (5)

In dimensionless units, the depth of gravure cells is one and the evolution equation is

∂h

∂t
= −∂h

∂x
− ∇ · (s∇∇2h), (6)

where s = (h− h1)
3.

The dimensionless Equation (4) is solved by a finite-difference method in space and time.
The substrate is discretized into an M ×N rectangular computational domain. Spatial deriva-
tives are approximated by use of central differences; thus the method is second-order accurate
in space. Symmetry boundary conditions are imposed on three of the four sides, i.e.,

hn = hnnn = 0, (7)
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Figure 2. The three cell patterns considered. The dimensions a, b, c are input parameters. Because of symmetry,
only a portion of the domains shown need to be calculated. Note that (iii) is the square pattern (i) rotated 45◦.

where n is distance in the normal direction at each boundary. Time marching is made effi-
cient by use of a semi-implicit method, as previously discussed [4, 11, 12]. The method is
an extension of the well-known alternating-direction-implicit method, developed originally
by Peaceman and coworkers [13], to the present fourth-order nonlinear field euqation. For a
given simulation, computer usage is proportional to the number MN of calculated h values.
Typical calculations require about one minute on a PC with a 500 Mhz processor, using the
Linux operating system and a public-domain Fortran compiler. Surface profiles and contours
are displayed dynamically during the calculation.

In each of the simulation results presented here, the free surface is pinned, for all y, at
(x, h) = (0, 5). The slope there is taken to be hx0 = −6 in dimensionless units. This slope
specification is arbitrarily chosen; in a complete calculation of the flow, including the full
gravure wheel and the web, its value would be found as part of the total solution. The slope
value used here will be seen to illustrate the differences in behavior for the cell patterns
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Figure 3. The paraboloidal gravure cell.

investigated. This slope condition gives cell-emptying values that are somewhat larger than
those observed experimentally [5].

Starting with an initial exponential shape, we find that the liquid-surface variation becomes
time-periodic after passage of about three cells. The computational window is fixed in space,
while the gravure pattern moves at constant speed in the direction of x increasing. The ‘steady-
state’ motion becomes periodic with a period equal to the cell-passage time, the time required
for any given cell to move one wavelength downstream.

Unlike our previously reported work [4], maximum symmetry of the cell pattern is ex-
ploited here to minimize the amount of computation. A portion of the actual calculation
‘window’ is shown by the rectangles in the diagrams of Figure 2 where three cell patterns,
termed (i) square, (ii) hexagonal, and (iii) diamond, are illustrated. As explained below, the
calculation only needs to be performed over the small ‘height’ of each rectangle (i.e. in the
cross-web direction). The offset per row, denoted c, is zero for the square pattern; it is equal to
a/2 for the other two. Note that the diamond pattern, with b = a, is the square pattern turned
45◦ to the direction of web motion. Typically, the calculation window in the web motion
direction is set to a length of 5b.

The cells are currently taken to be paraboloidal, with a radius equal to r0, except for a
small ‘fairing’ at their upper edges as shown in Figure 3. This shape is similar to those used
in many gravure applications. The cell profile has a continuous tangent and joins smoothly to
the gravure land level. The cell shape is given by

h1(r) = −h0

(
1 − r2

r2
0

)
, r/r0 ≤ √

1 − h∗/h0 (8)

and

h1(r) = −h2
0

h∗

(
1 − √

1 − h∗/h0
r

r0

)2

,
√

1 − h∗/h0 <
r

r0
<

1√
1 − h∗/h0

. (9)

The fairing height h∗ is adjustable and a typical value is 0·2h0. We can genralize the cell shape
using other functions for h1(r).

A rendered plot of the gravure surface, specifically the computational ‘window’, is shown
in Figure 4. The hexagonal pattern is illustrated. Reflection symmetry is imposed on the
long boundaries; thus, the calculation only needs to be performed on the region shown. The
dimensions of the computational array are M = 30 and N = 260 for the hexagonal pattern.
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Figure 4. Rendered picture of the pattern of gravure indentations. Hexagonal pattern. This is the size of the
computational domain that was used.

Figure 5. Cell fill fraction F vs. time for three identified cells, hexagonal pattern. The (0) cell lies at the origin
(x, y) = (0, 0) at time t = 0. Cells (−1) and (−2) lie in the following two rows, respectively.

3. Calculated results and discussion

There are a number of parameter combinations that determine the degree of cell emptying. In
general, increasing the cell size and increasing the magnitude of the meniscus slope will both
cause the cells to empty more completely. For the results shown here, we explore only the
effect of the cell pattern. The parameter values used are r0 = 2·5, h∗ = 0·2, and |hx0| = 6.
The pattern and (a, b, c) values are (i) square: (6,6,3), (ii) hexagonal (6,5.2,3), (iii) diamond
(6

√
2, 6/

√
2, 6/

√
2).

Figure 5 shows F , the fraction of cell volume filled with liquid, plotted vs. time, for the
hexagonal pattern. Results for three cells are shown. Cell (0) starts directly under the menis-
cus; it is not completely ‘processed’ by the large pressure gradients in the meniscus region
before it passes away as the substrate moves. Cells (−1) and (−2) are the next two cells that
pass under the meniscus. The emptying behavior is seen to be the same for both; this indicates
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Figure 6. Cell fill fraction F vs. time. Three cell patterns are compared. For clarity, the scales have been expanded.

Figure 7. Contour plots of the gravure (top) and coating surface (bottom). Diamond pattern; time = 25. Contour
levels for the gravure are −0·5 and −0·001; for the coating surface, they are −0·5, −0·2, 0, 0·2, 1.

that almost steady-state conditions have been achieved. The calculated fill fraction reaches
about 44%.

In Figure 6, the fill fraction of cell (−1) is plotted vs. time for the three patterns, where an
expanded scale has been used for clarity. The initial removal is virtually identical for all three.
The minimum liquid volume in each cell is 42·7%. There is a degree of re-filling, however,
as a portion of the liquid remaining on the land drains back into the cells. This re-filling is
more pronounced for the hexagonal pattern. We note that the hexagonal pattern has a greater
density of cells per unit area on the land than either of the other two patterns. Thus the cells
are closer to one another. This may make them more prone to refilling.
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Figure 8. Contour plots of the gravure (top) and coating surface (bottom). Hexagonal pattern; time = 32. Contour
levels for the gravure are −0·5 and −0·001; for the surface, they are −0·5, −0·2 ,0, 0·2, 1.

In Figures 7 and 8, contour plots of the gravure shape and free surface are shown for
the diamond and hexagonal patterns, respectively. Each set of plots was taken near the end
of the run when the time is about 20 per cent greater than that required for the pattern to
traverse the length of the computational window; thus t = 5b. Note that a significant volume
of liquid, with depth exceeding 0·2h0, remains on the land area. This is the source of liquid
that is available for refilling. The action of surface tension, which tends to minimize liquid-air
interfacial area, is the driving force for refilling.

Figure 9 shows edge views of the liquid surface and the gravured substrate. Because the
computational window is only one cell deep (in the y-direction) it gives a good picture of the
menisci within the cells as well as showing the significant amount of liquid above the land
level. The refilling of the cells with distance is also apparent, as the menisci within the cells
are seen to rise, with increasing horizontal distance x, in each case.

4. Concluding remarks

We have continued development of a mathematical model to describe cell emptying in direct
gravure-roll coating. Several different periodic patterns of cells have been considered. We find,
perhaps surprisingly, that the initial removal, as the receding meniscus ‘scrapes out’ the cells,
is quite independent of pattern. The pattern influence is restricted to the refilling process, with
the hexagonal pattern, for which the cells are more closely packed, suffering a greater degree
of refilling.

Only one particular cell shape and cell size has been investigated. Further investigation
can reveal other valuable information. More complex rheology can be considered to ascertain
whether there is a significant coupling between rheology and cell patterns. It is also a straight-
forward matter to generalize the procedure to consider other axisymmetric hole shapes; a
suitable family is

h1(r) = −h0

(
1 − rn

rn0

)
, (10)

where n ≥ 1 for example. As n becomes large, the cells will be more nearly flat-bottomed.
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Figure 9. Edge views of the gravure and the coating. Top: diamond pattern, time = 25. Bottom: Hexagonal pattern,
time = 32. Note the rise in meniscus height within the cells as one moves to the right. This indicates refilling.

Compared with actual experimental measures of cell emptying, the removed amounts re-
ported here are somewhat large [5]. The most important determinants of cell emptying are cell
size and meniscus curvature, the latter being expressed here by the prescription of meniscus
slope. The large-removal conditions used here were chosen so as to illustrate more clearly the
differences arising from the choice of cell pattern. In our previous work we used cells that were
trapezoidal volumes, usually termed quadrangular in the coating literature [4]. Investigation
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of these shapes, in various patterns, is another possible extension. It is quite likely to be true,
however, that in actual operation, solidification of residual liquids in these sharp-cornered
cells, may make the effective shape of the cells more like the paraboloidal shapes used here.

There are other types of gravure patterns that do not employ isolated cells. We have not
yet considered trihelical patterns, i.e. triangular grooves that wind around the roller. We expect
that emptying will be more complete, compared with the isolated cells considered here. Three-
dimensional effects lead to a significant increase in the predicted residual liquid fractions
compared to two-dimensional grooves. The reason for this is that the liquid surface, above
a partially-filled isolated cell, is ‘supported’ on all four sides by the cell side walls in three
dimensions. It is therefore more difficult to empty a cell because of the greater amount of
working against surface tension. In previous work [4] grooves parallel to the roller axis were
considered and they emptied more completely, as expected. In order to consider trihelical pat-
terns, it will be necessary to change the boundary conditions on the sides of the computational
window. In particular, the reflection-symmetry condition used here will need to be replaced
by a periodic boundary condition. The lateral window size a will then be selected to match
the pitch of the helix, in a manner consistent with the periodic boundary conditions.
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